On b-coloring of the Kneser graphs

نویسندگان

  • Ramin Javadi
  • Behnaz Omoomi
چکیده

A b-coloring of a graph G by k colors is a proper k-coloring of G such that in each color class there exists a vertex having neighbors in all the other k− 1 color classes. The b-chromatic number of a graph G, denoted by φ(G), is the maximum k for which G has a b-coloring by k colors. It is obvious that χ(G) ≤ φ(G). A graph G is b-continuous if for every k between χ(G) and φ(G) there is a b-coloring of G by k colors. In this paper, we study the b-coloring of Kneser graphs K(n, k) and determine φ(K(n, k)) for some values of n and k. Moreover, we prove that K(n, 2) is b-continuous for n ≥ 17. © 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

On Fall Colorings of Kneser Graphs

A fall k-coloring of a graph G is a proper k-coloring of G such that each vertex of G sees all k colors on its closed neighborhood. In this note, we characterize all fall colorings of Kneser graphs of type KG(n, 2) for n ≥ 2 and study some fall colorings of KG(n,m) in some special cases and introduce some bounds for fall colorings of Kneser graphs.

متن کامل

On the b-chromatic number of Kneser graphs

In this note, we prove that for any integer n ≥ 3 the b-chromatic number of the Kneser graph KG(m,n) is greater than or equal to 2 ( ⌊m 2 ⌋

متن کامل

Coloring Reduced Kneser Graphs

The vertex set of a Kneser graph KG(m,n) consists of all n-subsets of the set [m] = {0, 1, . . . ,m − 1}. Two vertices are defined to be adjacent if they are disjoint as subsets. A subset of [m] is called 2stable if 2 ≤ |a − b| ≤ m − 2 for any distinct elements a and b in that subset. The reduced Kneser graph KG2(m,n) is the subgraph of KG(m,n) induced by vertices that are 2-stable subsets. We ...

متن کامل

A short proof for Chen's Alternative Kneser Coloring Lemma

We give a short proof for Chen’s Alternative Kneser Coloring Lemma. This leads to a short proof for the Johnson-Holroyd-Stahl conjecture that Kneser graphs have their circular chromatic numbers equal to their chromatic numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009